
Towards an ISO 26262-compliant OSLC-
based Tool Chain Enabling Continuous

Self-assessment

Barbara Gallina1

with contribution from and Mattias Nyberg2

1 Mälardalen University, Västerås, Sweden
barbara.gallina@mdh.se

2 Scania AB, Södertälje, Sweden
mattias.nyberg@scania.com

Work supported by the Swedish Foundation for Strategic Research via the
SSF Gen&ReuseSafetyCases project

23rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

223rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

Recent Bio

3

– Associate Professor at MDH, working on Dependability
– Dependability modelling and analysis
– ISO 26262-compliant safety case building
– Systematic reuse of (Relaxed) ACID-based transactional artifacts
– Systematic reuse of product-related certification artifacts
– (Safety-critical) Software Development as a Service (SDaaS)
– Systematic reuse of process-related certification artifact

– Research Projects
– EU ECSEL AMASS: Technical manager, WP/Task-leader
– EU ARTEMIS CHESS, CONCERTO, p/nSafeCer: (co)WP/Task-leader
– SSF SYNOPSIS, Gen&ReuseSafetyCases, strategic mobility grant
– …

23rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

Context, motivation, and vision

4

[Gallina et al. 2015]

Current Safety Documentation at Scania
(word/excel based)

Future Safety Case Creation at Scania
OSLC-based

Safety Case-Argument that the safety requirements for an item are complete and satisfied by evidence
compiled from work products of the safety activities during development.
ISO 26262- Part 1, Definition 1.106

23rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

Soft solution: Open-minded Teams for
Lifecycle Collaboration

ISO26262:
safety manager can delegate tasks!

• Work performed by the different teams
• Replace safety manager by a

safety case generator
• Avoid the introduction of
additional hierarchical roles
• Flat hierarchy is preserved

•A safety manager should be appointed to
guarantee the continuous integration of
best practices, which should be suggested
to the various teams
A safety manager should be mindful and
vigilant

17th March 16, SCSSS 5
Adapted from the original OSLC figure

Hard solution: OSLC-based interoperable tools

Safety-case generator:
Consumer of evidence
Producer of evidence-supported composable argument-fragments,
contributing to showing that the product is acceptable safe

Safety case

17th March 16, SCSSS 6

Talk outline
• Background

– ISO 26262 (focus on Part 6, clause 8-9)
– OSLC (Open Services for Lifecycle Collaboration)
– CSM (Chassis Management System) 1

• Core
• Related work
• Conclusion and future work

723rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

ISO 26262

8

can be used for continuous self-assessment. In Section VII, we
discuss related work. Finally, in Section VIII we present some
concluding remarks and future work.

II. BACKGROUND

In this section, we present the background information
on which we base our work. In particular, in Section II-A,
we provide a brief overview of ISO 26262 and detailed
information about Part 6-product development at the software
level. In Section II-B we provide an overview of OSLC and its
underlying set of specifications, necessary to define ontological
domains. In Section II-C we provide essential information
related to the ECU contained in safety-critical system, used
to show the domain instantiation.

A. ISO 26262

ISO 26262 regulates all phases of the entire lifecycle of the
product (item), starting from the management and requirements
specification phases up to the production release. The standard
recommends the usage of a V-model at item level as well as
at element (software and hardware) level. ISO 26262 consists
of 9 normative parts, each of which structured into clauses.
All the clauses state the objectives, inputs for the clause,
recommendations and requirements to be fulfilled and finally
the work products that are to be generated. Notes are also
included. Notes are not normative and are expected to help the
applicant in understanding and interpreting the requirements.
Additionally, obligations on the corresponding methods are
also imposed based on the assigned ASIL. In this paper, we
limit our attention to a subset of clauses (9-11) of Part 6 that are
related to the right side of the software V-model, as depicted
in Fig. 1 adapted from [9]. In this paper, the clauses 6-8 in
part 6 of the standard are out of scope (i.e the left hand side
of the software V-model). However, they are depicted to make
visible how the two arms of the V-model are related.

Fig. 1: Zoom on the ISO 26262 V-model related to Part 6.

These clauses are:

9 Software unit testing - The main objective of this clause
is to verify that the implemented software units are as per
the software unit design specification and do not contain
any undesired behaviour.

10 Software integration and testing -The objectives of this
clause are to integrate the software units and generate
the embedded software and to verify that the embedded
software is as per the software architectural design and
does not contain undesired behaviour.

11 Verification of Software safety requirements -The main
objective of this clause is to verify that the developed

embedded software satisfies all the software safety re-
quirements defined in Part 6, clause 6.

All the above-listed clauses require the generation of three
work products: software verification report (SVR), software
verification specification (SVS) and software verification plan
(SVP). For sake of completeness is to should be mentioned
that the standard recommends best practices for achieving
functional safety by recommending the generation of hundreds
of work products, however it also defines tailoring rules which
can be applied to omit the generation of some work products
in case of a justified and well defined rationale.

B. OSLC

OSLC [13] is an industrial standard that targets tools used
during a products life cycle and enables their integration and
interoperability. Tools for requirements engineering, design,
implementation, verification, etc. are expected to interoperate
in a traceable manner i.e. traceability between the respective
work products can be easily retrieved and shown. To enable
interoperability, different specifications, called domains, need
to be provided. More precisely, an OSLC Domain is one ALM
(Application Lifecycle Management) or one Product Lifecycle
Management (PLM) topic area such as Quality Management
(QM), Architecture Management (AM), Requirements Man-
agement (RM). Each OSLC Domain has its own OSLC speci-
fication that complies with this core specification. OSLC builds
on top of Linked Data [12], Resource Description Framework
(RDF) [15], RDF Schema [16], and HTTP protocol. Each
work product is described as an HTTP resource, identified
via a Uniform Resource Identifier (URI). Work products are
manipulated via HTTP methods (i.e., GET, POST, etc.). To
interoperate via a work product, a tool that acts as a provider
has to associate an URI to the work product and post it; a
tool acting as consumer can get the work product via the
URI. RDF provides a standard representation for data as
directed graphs to facilitate the linking of the resources to be
described. RDF Schema provides a data-modelling vocabulary
for RDF data. RDF Schema is an extension of the basic
RDF vocabulary. RDF Schema is complemented by several
companion documents which describe the basic concepts and
abstract syntax of RDF as well as its formal semantics. The
core structure of linked data, presented in form of RDF-graphs,
consists of triples. These triples consist of subject, object and
predicate (refer to Fig. 2). RDF allow only binary relationship
to be represented.

Fig. 2: Linked Data Triple.

C. CMS (Chassis Management System)1

In this section, we provide essential information concerning
CMS1 and its context. CMS1 is an ECU (Electronic Control
Unit), which along with other ECUs is used for realising the
Fuel Level Estimation and Display System (FLEDS) function-
ality within Scania products.

1. Software verification plan
2. Software verification specification
3. Software verification report

[Gallina et al. 2016, CARS-2016]

{

23rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

OSLC
Open Services for Lifecycle Collaboration

9

can be used for continuous self-assessment. In Section VII, we
discuss related work. Finally, in Section VIII we present some
concluding remarks and future work.

II. BACKGROUND

In this section, we present the background information
on which we base our work. In particular, in Section II-A,
we provide a brief overview of ISO 26262 and detailed
information about Part 6-product development at the software
level. In Section II-B we provide an overview of OSLC and its
underlying set of specifications, necessary to define ontological
domains. In Section II-C we provide essential information
related to the ECU contained in safety-critical system, used
to show the domain instantiation.

A. ISO 26262

ISO 26262 regulates all phases of the entire lifecycle of the
product (item), starting from the management and requirements
specification phases up to the production release. The standard
recommends the usage of a V-model at item level as well as
at element (software and hardware) level. ISO 26262 consists
of 9 normative parts, each of which structured into clauses.
All the clauses state the objectives, inputs for the clause,
recommendations and requirements to be fulfilled and finally
the work products that are to be generated. Notes are also
included. Notes are not normative and are expected to help the
applicant in understanding and interpreting the requirements.
Additionally, obligations on the corresponding methods are
also imposed based on the assigned ASIL. In this paper, we
limit our attention to a subset of clauses (9-11) of Part 6 that are
related to the right side of the software V-model, as depicted
in Fig. 1 adapted from [9]. In this paper, the clauses 6-8 in
part 6 of the standard are out of scope (i.e the left hand side
of the software V-model). However, they are depicted to make
visible how the two arms of the V-model are related.

Fig. 1: Zoom on the ISO 26262 V-model related to Part 6.

These clauses are:

9 Software unit testing - The main objective of this clause
is to verify that the implemented software units are as per
the software unit design specification and do not contain
any undesired behaviour.

10 Software integration and testing -The objectives of this
clause are to integrate the software units and generate
the embedded software and to verify that the embedded
software is as per the software architectural design and
does not contain undesired behaviour.

11 Verification of Software safety requirements -The main
objective of this clause is to verify that the developed

embedded software satisfies all the software safety re-
quirements defined in Part 6, clause 6.

All the above-listed clauses require the generation of three
work products: software verification report (SVR), software
verification specification (SVS) and software verification plan
(SVP). For sake of completeness is to should be mentioned
that the standard recommends best practices for achieving
functional safety by recommending the generation of hundreds
of work products, however it also defines tailoring rules which
can be applied to omit the generation of some work products
in case of a justified and well defined rationale.

B. OSLC

OSLC [13] is an industrial standard that targets tools used
during a products life cycle and enables their integration and
interoperability. Tools for requirements engineering, design,
implementation, verification, etc. are expected to interoperate
in a traceable manner i.e. traceability between the respective
work products can be easily retrieved and shown. To enable
interoperability, different specifications, called domains, need
to be provided. More precisely, an OSLC Domain is one ALM
(Application Lifecycle Management) or one Product Lifecycle
Management (PLM) topic area such as Quality Management
(QM), Architecture Management (AM), Requirements Man-
agement (RM). Each OSLC Domain has its own OSLC speci-
fication that complies with this core specification. OSLC builds
on top of Linked Data [12], Resource Description Framework
(RDF) [15], RDF Schema [16], and HTTP protocol. Each
work product is described as an HTTP resource, identified
via a Uniform Resource Identifier (URI). Work products are
manipulated via HTTP methods (i.e., GET, POST, etc.). To
interoperate via a work product, a tool that acts as a provider
has to associate an URI to the work product and post it; a
tool acting as consumer can get the work product via the
URI. RDF provides a standard representation for data as
directed graphs to facilitate the linking of the resources to be
described. RDF Schema provides a data-modelling vocabulary
for RDF data. RDF Schema is an extension of the basic
RDF vocabulary. RDF Schema is complemented by several
companion documents which describe the basic concepts and
abstract syntax of RDF as well as its formal semantics. The
core structure of linked data, presented in form of RDF-graphs,
consists of triples. These triples consist of subject, object and
predicate (refer to Fig. 2). RDF allow only binary relationship
to be represented.

Fig. 2: Linked Data Triple.

C. CMS (Chassis Management System)1

In this section, we provide essential information concerning
CMS1 and its context. CMS1 is an ECU (Electronic Control
Unit), which along with other ECUs is used for realising the
Fuel Level Estimation and Display System (FLEDS) function-
ality within Scania products.

• Standard aimed at enabling life cycles tools interoperability
– Various extensible specifications are at disposal

• Predefined OSLC domains, including QM (quality management) and AM
(Architecture Management)

– QM defines QM resources (Test Plan, Test Case, Test Script, Test Execution Record, and Test Result)

– builds on top of:
• Linked Data
• Resource Description Framework (RDF)
• RDF Schema
• HTTP protocol
• SPARQL

23rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

CMS (Chassis Management System)1

• is an ECU (Electronic Control Unit) used for realising the Fuel Level
Estimation and Display System functionality within Scania products.

• is responsible for calculating the total fuel level.

1023rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

Continuous self-assessment: technical solution

1123rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

26262 (see [4] and [5]). Initially, we have targeted manual
creation and then we have started conceiving semi-automatic
creation by proposing model-driven certification approaches.
Concretely, we have shown that a safety case fragments can be
created semi-automatically via transformation rules from
contract-and component-based architectural specifications [13]
and process models [11]. Moreover, we have proposed a Cloud-
based infrastructure (see [12]), where safety processes,
including tasks aimed at generating safety case fragments can be
enacted on the Cloud. More recently, as recalled in Section II,
we have started pioneering ways for building an OSLC-based
ISO 26262-compliant tool chain for continuous self-assessment
[6]. Concretely, we have proposed ISO 26262-compliant OSLC-
domains.

In this paper, we integrate our numerous and apparently
scattered contributions in a coherent approach for enabling
continuous self-assessment. Such approach is depicted in Fig. 2.
The main idea is that by exploiting the OSLC-related protocol
stack, continuous self-assessment becomes possible: the life-
cycle of a safety case can be actually aligned to the life-cycle of
the product and thus it can be continuously semi-automatically
generated by compiling the different types of evidence. Figure 2
limits its focus to the alignment of a portion of the software V-
model and the compilation of safety case fragments related to
that portion.

In particular, query mechanism and more precisely SPARQL
query of type “construct” are expected to be formulated and
executed in order to create and populate argumentation-related
RDF-graphs, which in turn can be queried via select queries to
get the information needed to apply transformation rules and
build GSN-goal structures in compliance with SACM.

Fig. 2. OSLC-based approach for self-assessment.

IV. ISO 26262-COMPLIANT AM & QM INSTANCES
The software V-model described within ISO 26262-Part 6,

can be sliced and mapped onto three OSLC-based domain
extensions: one aimed at representing the requirements
engineering phase (ISO 26262-compliant OSLC RM), one
aimed at representing the design and implementation phase
(ISO 26262-compliant OSLC AM) and finally one aimed at
representing the verification phase (ISO 26262-compliant
OSLC QM). In the context of two master theses (see [10] and
[9]) and related publications (see [7] and [8]), RDFS
representations of the AM and QM domains were separately
provided and RDF-graphs were created based on some
Company X (Redacted for double-blind review) documents. In
this section, we limit our attention to a very limited portion of
the AM and QM-related extensions.

More specifically we focus on few classes (namely, SW
Unit Implementation, SW Verification Report, SW Verification
Specification, and, Object to be tested) and create instances by
populating them with CMS1: Fuel –related information and by
linking them. The following listings represent the instances:

<!--SW Unit Implementation: CMS1: Fuel -->
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:oslc_iso26262am="http://open-services.net/ns/oslc_iso26262am#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
<oslc_iso26262am:SWUnitImplementation
rdf:about= " http://open-
services.net/ns/oslc_iso26262am/SWUnitImplementation/CMS1Fuel">
<oslc_iso26262am:asil
rdf:resource="http://open-services.net/ns/oslc_iso26262am#D"/>
<oslc_iso26262am:programmingLanguage>C
</oslc_iso26262am:programmingLanguage>
<oslc_iso26262am:designPrincipleSelected
rdf:resource="http://open-services.net/ns/oslc_iso26262am#No-multiple-use-
of-variable-names"/>
<oslc_iso26262am:designPrincipleSelected
rdf:resource="http://open-services.net/ns/oslc_iso26262am#No-recursions"/>
 <oslc_iso26262am:designPrincipleSelectedRationale>
Observations made in the simulink models and the document AER201, shows
that the names of the variables are maintained during the creation of the
software unit and inside the software functions. Additionally, there are not
recursive functions in the model.
</oslc_iso26262am:designPrincipleSelectedRationale>
<oslc_iso26262am:Implements rdf:resource=" http://open-
services.net/ns/oslc_iso26262am/SWUnitDesignSpecification/CMS1Fuel-
D"/>
</oslc_iso26262am:SoftwareUnitImplementation>
</rdf:RDF>

<!—SW Verification Report-->
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:oslc_iso26262qm="http://open-services.net/ns/iso26262qm#">

<oslc_iso26262qm:SoftwareVerificationReport
rdf:about=" http://open-services.net/ns/oslc_iso26262qm
/verificationReports/1">
<dcterms:description> Work product, specified according to ISO 26262-Part6,
9.5.3, that consists of the execution and evaluation of the software with
reference to the software verification plan and software verification
specification</dcterms:description>
<dcterms:identifier> 1 </dcterms:identifier>
 <dcterms:title > Verification report </dcterms:title >
<oslc_iso26262qm:passResult>1 </oslc_iso26262qm:passResult >
<oslc_iso26262qm:testlevel> sw unit test</oslc_iso26262qm:testlevel >
<oslc_iso26262qm:asil>Not available</oslc_iso26262qm:asil>
<oslc_iso26262qm:version>Not available</oslc_iso26262qm:version>
<oslc_iso26262qm:tailoring > None</oslc_iso26262qm:tailoring >
<oslc_iso26262qm:testExecutionLog rdf:resource="http://myserver/myapp/
testExecutionLogs/1" />
<oslc_iso26262qm:testTool rdf:resource=" http://open-
services.net/ns/oslc_iso26262qm/testTools/1" />
<oslc_iso26262qm:softwareUnitVerificationMethod rdf:resource="
http://open-services.net/ns/oslc_iso26262qm /methods/verificationMethods/1
"/>
<oslc_iso26262qm:calibrationDataSpecification rdf:resource=" http://open-
services.net/ns/oslc_iso26262qm/calibrationDataSpecifications /1 " />
<oslc_iso26262qm:configurationDataSpecification rdf:resource=" http://open-
services.net/ns/oslc_iso26262qm/configurationDataSpecifications /1"/>

Continuous self-assessment: technical solution

1223rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

Creating ISO 26262-compliant OSLC
domains

• First, we create a metamodel in compliance with a UML-profile for OSLC
– Identify the work product types that are required;
– Create a meta-class for each work product;
– Identify relevant information for characterizing the work products;
– Create meta-attributes and/or other types;
– Identify associations that inter- relate the work products;
– Create meta-associations.

• Then, this meta-model can be transformed into an RDFS.

1323rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

ISO 26262-compliant QM extension

• ..

14

can be used for continuous self-assessment. In Section VII, we
discuss related work. Finally, in Section VIII we present some
concluding remarks and future work.

II. BACKGROUND

In this section, we present the background information
on which we base our work. In particular, in Section II-A,
we provide a brief overview of ISO 26262 and detailed
information about Part 6-product development at the software
level. In Section II-B we provide an overview of OSLC and its
underlying set of specifications, necessary to define ontological
domains. In Section II-C we provide essential information
related to the ECU contained in safety-critical system, used
to show the domain instantiation.

A. ISO 26262

ISO 26262 regulates all phases of the entire lifecycle of the
product (item), starting from the management and requirements
specification phases up to the production release. The standard
recommends the usage of a V-model at item level as well as
at element (software and hardware) level. ISO 26262 consists
of 9 normative parts, each of which structured into clauses.
All the clauses state the objectives, inputs for the clause,
recommendations and requirements to be fulfilled and finally
the work products that are to be generated. Notes are also
included. Notes are not normative and are expected to help the
applicant in understanding and interpreting the requirements.
Additionally, obligations on the corresponding methods are
also imposed based on the assigned ASIL. In this paper, we
limit our attention to a subset of clauses (9-11) of Part 6 that are
related to the right side of the software V-model, as depicted
in Fig. 1 adapted from [9]. In this paper, the clauses 6-8 in
part 6 of the standard are out of scope (i.e the left hand side
of the software V-model). However, they are depicted to make
visible how the two arms of the V-model are related.

Fig. 1: Zoom on the ISO 26262 V-model related to Part 6.

These clauses are:

9 Software unit testing - The main objective of this clause
is to verify that the implemented software units are as per
the software unit design specification and do not contain
any undesired behaviour.

10 Software integration and testing -The objectives of this
clause are to integrate the software units and generate
the embedded software and to verify that the embedded
software is as per the software architectural design and
does not contain undesired behaviour.

11 Verification of Software safety requirements -The main
objective of this clause is to verify that the developed

embedded software satisfies all the software safety re-
quirements defined in Part 6, clause 6.

All the above-listed clauses require the generation of three
work products: software verification report (SVR), software
verification specification (SVS) and software verification plan
(SVP). For sake of completeness is to should be mentioned
that the standard recommends best practices for achieving
functional safety by recommending the generation of hundreds
of work products, however it also defines tailoring rules which
can be applied to omit the generation of some work products
in case of a justified and well defined rationale.

B. OSLC

OSLC [13] is an industrial standard that targets tools used
during a products life cycle and enables their integration and
interoperability. Tools for requirements engineering, design,
implementation, verification, etc. are expected to interoperate
in a traceable manner i.e. traceability between the respective
work products can be easily retrieved and shown. To enable
interoperability, different specifications, called domains, need
to be provided. More precisely, an OSLC Domain is one ALM
(Application Lifecycle Management) or one Product Lifecycle
Management (PLM) topic area such as Quality Management
(QM), Architecture Management (AM), Requirements Man-
agement (RM). Each OSLC Domain has its own OSLC speci-
fication that complies with this core specification. OSLC builds
on top of Linked Data [12], Resource Description Framework
(RDF) [15], RDF Schema [16], and HTTP protocol. Each
work product is described as an HTTP resource, identified
via a Uniform Resource Identifier (URI). Work products are
manipulated via HTTP methods (i.e., GET, POST, etc.). To
interoperate via a work product, a tool that acts as a provider
has to associate an URI to the work product and post it; a
tool acting as consumer can get the work product via the
URI. RDF provides a standard representation for data as
directed graphs to facilitate the linking of the resources to be
described. RDF Schema provides a data-modelling vocabulary
for RDF data. RDF Schema is an extension of the basic
RDF vocabulary. RDF Schema is complemented by several
companion documents which describe the basic concepts and
abstract syntax of RDF as well as its formal semantics. The
core structure of linked data, presented in form of RDF-graphs,
consists of triples. These triples consist of subject, object and
predicate (refer to Fig. 2). RDF allow only binary relationship
to be represented.

Fig. 2: Linked Data Triple.

C. CMS (Chassis Management System)1

In this section, we provide essential information concerning
CMS1 and its context. CMS1 is an ECU (Electronic Control
Unit), which along with other ECUs is used for realising the
Fuel Level Estimation and Display System (FLEDS) function-
ality within Scania products.

23rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

Instantiating our ISO 26262-compliant QM

1523rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

Validation

• We performed empirical validation
– Questionnaire-based validation

• traceability, confirmability and abstraction

– àpositive feedback from the respondents

1623rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

Continuous self-assessment

• The generation of the safety case can be done continuously allowing for
monitoring of its progress: from a preliminary and skeleton-oriented
version to a complete and operational one.

1723rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

HOW?

Continuous self-assessment

• Via SPARQL queries

1823rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

<oslc_iso26262qm:softwareRequirementCoverage rdf:resource=" http://open-
services.net/ns/oslc_iso26262qm/RequirementsCoverage/1" />
<!--ISO 26262 specific relationship properties-->
<oslc_iso26262qm:usesSoftwareVerificationPlan rdf:resource=" http://open-
services.net/ns/oslc_iso26262qm/verificationPlans/1" />
<oslc_iso26262qm:usesSoftwareVerificationSpecification rdf:resource="
http://open-services.net/ns/oslc_iso26262qm/verificationSpecifications/1" />
</oslc_iso26262qm:SoftwareVerificationReport>
</rdf:RDF>

<!—SW Verification Specification-->
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:oslc_iso26262qm="http://open-services.net/ns/iso26262qm#">
<oslc_iso26262qm:SoftwareVerificationSpecification
rdf:about=" http://open-
services.net/ns/oslc_iso26262qm/VerificationSpecification/1">
<dcterms:description> Specification of methods, test environment, execution
of CMS1:Fuel. It includes the resources of test objects and test cases used to
test these objects </dcterms:description>
<dcterms:identifier> 1 </dcterms:identifier>
<oslc_iso26262qm:testlevel> sw unit test</oslc_iso26262qm:testlevel>
<oslc_iso26262qm:objectToBeTested
"http://open-
services.net/ns/oslc_iso26262am/SWUnitImplementation/CMS1Fuel">
<oslc_iso26262qm:testCase rdf:resource=" http://open-
services.net/ns/oslc_iso26262qm/testing/testCases/1" />
<oslc_iso26262qm:usedForSoftwareVerificationReport rdf:resource="
http://open-services.net/ns/oslc_iso26262qm/verificationReports/1" />
<oslc_iso26262qm:usesSoftwareVerificationPlan rdf:resource=" http://open-
services.net/ns/oslc_iso26262qm/verificationPlans/1" />
<oslc_iso26262qm:usedForVerifyingSWSafetyRequirement rdf:resource="
http://open-services.net/ns/oslc_iso26262rm/ swSafetyRequirements /2" />
<oslc_iso26262qm:usedForVerifyingSWArchitectureElement rdf:resource="
http://open-services.net/ns/oslc_iso26262am/swArchitectureElements/1" />
</oslc_iso26262qm:SoftwareVerificationSpecification>
</rdf:RDF>

<!—Object to be tested: CMS1:Fuel -->
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms=http://purl.org/dc/terms/
xmlns:oslc_iso26262qm="http://open-services.net/ns/iso26262qm#">
<oslc_iso26262qm:ObjectToBeTested
rdf:about=
"http://openservices.net/ns/oslc_iso26262am/SWUnitImplementation/CMS1F
uel ">
<dcterms:description> CMS1:Fuel description</dcterms:description>
<dcterms:identifier> 1 </dcterms:identifier>
<dcterms:title> CMS1:Fuel </dcterms:title>
<oslc_iso26262qm:testlevel> sw unit test</oslc_iso26262qm:testlevel>
<oslc_iso26262qm:objectType> sw unit </oslc_iso26262qm:objectType>
<oslc_iso26262qm:usedBySoftwareTestCase rdf:resource=" http://open-
services.net/ns/oslc_iso26262qm /testCases/1" />
<oslc_iso26262qm:usedBySoftwareVerificationSpecification rdf:resource="
http://open-services.net/ns/oslc_iso26262qm/verificationSpecifications/1" />
</oslc_iso26262qm:ObjectToBeTested >
</rdf:RDF>

For sake of clarity it should be noted that for confidentiality

reasons, these instances are based on Company X (Redacted for
double-blind review) documents related to an old variant of the
CMS1: Fuel. As it can be easily retrieved from the listing, a
software verification report is connected to the software
verification specification via “uses”. The software verification
specification contains the object to be tested, which points to

the specific software unit implementation (CSM1: Fuel). It
should also be noted that while doing this work, we have left
some fields unspecified. The motivation for this omission is that
the information that we had did not contain any ISO 26262-
specific data. For instance, no ASIL (Automotive Safety
Integrity Level) classification was available. The explanation of
all the properties of the above-listed resources is out of scope.
The interested reader might refer to ISO 26262, Part 6.

V. QUERYING THE ONTOLOGICAL REPRESENTATION
In this section, we first present the infrastructural settings

for querying the ontological representation. Then, we explain
which kind of queries we intend to execute. Finally, we provide
an example of such queries.

Fig. 3. Infrastructural settings

As Fig.3 shows, in our environment the user performs

queries via a SPARQL endpoint and gets the needed results,
based on data stored in graph DB which is fed with information
coming from the tools used for software unit requirements
specification, design, implementation, and testing.
Implemented SW Units –IDE contain the work products related
to clause 8 while the testing tool contains information related to
the work product required by clause 9.

As Fig.3 shows, the user might be a human being (e.g.,
safety engineer) or a machine, more specifically a safety case
generator that coherently with what depicted in Fig. 2 would get
results to be then visualized in a standardized format. Since the
safety case generator has not been developed yet. In this section,
we only provide initial sets of conceptual queries to be
formulated in SPARQL by a human. It should be noted that,
given our approach, three different kinds of queries can be
envisaged. The first set of queries of type CONSTRUCT is
aimed at constructing argumentation-related RDF graph from
RDF graphs related to ISO 26262-Part 6-resources in order to
populate the RDF-graph representing the argumentation.
CONSTRCT queries should enable the complete compilation
of ISO 26262 Part 6 work-products.

The second set of queries of type SELECT is aimed at
retrieving the information to be used by transformation rules to
render the argumentation via the most popular concrete
syntaxes (GSN and CAE). For instance, the leader of the
testing-team might be interested in inspecting the argument
concerning traceability and satisfiability of software
requirements and see if the software unit implementation has
been tested and if the result was “pass” or not. The identification
and visualization of counter evidence is crucial and should
trigger a re-implementation of even a re-design.

Finally, the third type of queries of queries of type ASK is
aimed at asking questions to get quick confirmations. For

Continuous self-assessment

1923rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

instance, an external assessor (e.g., an auditor) might be
interested in checking if the software unit design is designed
according to the method appropriate for its criticality level [9].
Or if for a given software verification report, corresponding
software verification specification exists.
In this paper we only present one simple ASK query:

PREFIX oslc_iso26262am: <http://open-services.net/ns/oslc_iso26262am#>
PREFIX oslc_iso26262qm: <http://open-services.net/ns/oslc_iso26262qm#>
ASK{
 { ?subject oslc_iso26262qm:passResult ?o
 FILTER(xsd:integer(?o="1"))}
}

This query was performed on the graph obtained by considering
jointly the AM and the QM domains. This query returned YES
since the verification report under consideration contains a
single test case with passResult equal to one. This query was
executed by using TopBraid Composer, the namespaces where
not published.

VI. CREATING A SAFETY CASE FRAGMENT
In this section, we sketch a pattern-based safety case

fragment that can be used to construct an instance via our
approach based on the current information presented within the
ISO 26262-compliant AM and QM. To do that we use simple
declarative language, indentation, numbering, font changes, etc.
as proposed by [22]. The reader familiar with GSN or CAE can
read [22] and [18] to see how to translate our sketched fragment.

Claim 1: Algorithm X was successfully tested.
Context 1: Definition of successfully tested via coverage criteria.

Definition of X.
 Claim 1.1: All critical test cases passed

Context 2: Definition of critical test cases.
 Strategy 1.1: Argument over all critical test cases (TC1, TC2, TCN)
Claim 1.1.1: Test case TC1 passed
Evidence 1: Test report to be directly linked to TC1;

By replacing X with “CMS1:Fuel” and by considering that

in our simple example only 1 test case was considered, we
obtain:

Claim 1: CMS1:Fuel was successfully tested.
 Context 1: Definition of successfully tested via coverage criteria.
 Claim 1.1: All critical test cases passed

Context 2: Definition of critical test cases.
 Strategy 1.1: Argument over test case TC1
Claim 1.1.1: Test case TC1 ("http://open-
services.net/ns/oslc_iso26262qm/testCases/1") passed
Evidence: Test Execution Log
(rdf:resource= http://open-services.net/ns/oslc_iso26262qm/
testExecutionLogs/1);

This fragment is not intended to be compelling. A

comprehensive and compelling argument is still to be
developed. Similar fragments could be conceived for showing
process compliance. However, at the time being no process
compliance could be claimed since ASIL-classification was not
yet integrated within the documents that we considered for this
paper. By formulating adequate queries, counter evidence could
be identified and this would be beneficial since could lead to
mitigation actions aimed at increasing safety.

VII. DISCUSSION
Semi-automatic argument generation of argument

fragments might be considered inappropriate. The risk could be
that only supportive evidence is considered. To avoid being
biased by the well-known confirmation bias, in our approach
queries aimed at identifying counter evidence are also expected
to be formulated. Moreover, as mentioned our intention is to
offer an approach for continuous self-assessment. The
identification of counter evidence is expected to trigger a
review/redo of previous process steps.

The benefits of using OSLC to enable traceability is
undoubtable. Our vision was to bring those benefits to safety-
critical systems self-assessment. Our vision-oriented
investigation is still in its early stages and we have not yet
performed a proper evaluation of our approach. Evaluating our
approach is indeed challenging as the resources (time and
workforce) are not available to develop the OSLC adaptors as
well as other tools -required to create a complex, real world
safety case using our approach. Therefore, in our work we rely
on a phased evaluation in which we use the lessons learnt from
our experiences with ISO 26262-Part 6, OSLC-domain
extension, and Apache Jena in addition to studying literature
(e.g. [28]) and learning industrial experience as in [30] to
validate the potential of our approach.

In our pioneering and conceptual work, no issue concerning
e.g., maturity of OSLC, scalability when performing complex
queries, was taken into consideration. As surveyed in [28],
OSLC is still unstable to offer a solution spanning the entire
ALM-tool chain. However, given its potential, we believe that
it is worth investigating this technological domain and in
parallel contribute to its development. Given our initial simple
queries and the current infrastructural settings, where data can
be considered static, we selected SPARQL. However, to
perform continuous self-assessment in the presence of a real
time stream of data, other query languages could be explored.
For instance, Continuous SPARQL [], the extension of
SPARQL to query RDF streams could be taken into
consideration.

VIII. RELATED WORK
In this section, we discuss work that is related to ours either

because of similar choices in terms of OSLC-specifications or
because of similar objectives in terms of querying mechanisms.
Moreover, we also discuss work aimed at extracting
automatically arguments from unstructured textual corpora.

In the literature few works have currently explored the semi-
automatic creation of safety cases based on OSLC. Iliasov et al
2015 [20] present their vision for building an OSLC-based
prototype of integrated environment for engineering and
certifying dependable systems. Laibinis et al 2015 [21] further
develop the work presented in [21]. Concerning transformation
rules, declarative transformation rules from RDF to RDF and
other languages were discussed in [14]. Authors also discussed
how to make their approach generic, i.e., the rule language
independent from the output language.

Concerning querying mechanisms, Denney et al. 2014 [19]
introduce a preliminary approach and a new query language

instance, an external assessor (e.g., an auditor) might be
interested in checking if the software unit design is designed
according to the method appropriate for its criticality level [9].
Or if for a given software verification report, corresponding
software verification specification exists.
In this paper we only present one simple ASK query:

PREFIX oslc_iso26262am: <http://open-services.net/ns/oslc_iso26262am#>
PREFIX oslc_iso26262qm: <http://open-services.net/ns/oslc_iso26262qm#>
ASK{
 { ?subject oslc_iso26262qm:passResult ?o
 FILTER(xsd:integer(?o="1"))}
}

This query was performed on the graph obtained by considering
jointly the AM and the QM domains. This query returned YES
since the verification report under consideration contains a
single test case with passResult equal to one. This query was
executed by using TopBraid Composer, the namespaces where
not published.

VI. CREATING A SAFETY CASE FRAGMENT
In this section, we sketch a pattern-based safety case

fragment that can be used to construct an instance via our
approach based on the current information presented within the
ISO 26262-compliant AM and QM. To do that we use simple
declarative language, indentation, numbering, font changes, etc.
as proposed by [22]. The reader familiar with GSN or CAE can
read [22] and [18] to see how to translate our sketched fragment.

Claim 1: Algorithm X was successfully tested.
Context 1: Definition of successfully tested via coverage criteria.

Definition of X.
 Claim 1.1: All critical test cases passed

Context 2: Definition of critical test cases.
 Strategy 1.1: Argument over all critical test cases (TC1, TC2, TCN)
Claim 1.1.1: Test case TC1 passed
Evidence 1: Test report to be directly linked to TC1;

By replacing X with “CMS1:Fuel” and by considering that

in our simple example only 1 test case was considered, we
obtain:

Claim 1: CMS1:Fuel was successfully tested.
 Context 1: Definition of successfully tested via coverage criteria.
 Claim 1.1: All critical test cases passed

Context 2: Definition of critical test cases.
 Strategy 1.1: Argument over test case TC1
Claim 1.1.1: Test case TC1 ("http://open-
services.net/ns/oslc_iso26262qm/testCases/1") passed
Evidence: Test Execution Log
(rdf:resource= http://open-services.net/ns/oslc_iso26262qm/
testExecutionLogs/1);

This fragment is not intended to be compelling. A

comprehensive and compelling argument is still to be
developed. Similar fragments could be conceived for showing
process compliance. However, at the time being no process
compliance could be claimed since ASIL-classification was not
yet integrated within the documents that we considered for this
paper. By formulating adequate queries, counter evidence could
be identified and this would be beneficial since could lead to
mitigation actions aimed at increasing safety.

VII. DISCUSSION
Semi-automatic argument generation of argument

fragments might be considered inappropriate. The risk could be
that only supportive evidence is considered. To avoid being
biased by the well-known confirmation bias, in our approach
queries aimed at identifying counter evidence are also expected
to be formulated. Moreover, as mentioned our intention is to
offer an approach for continuous self-assessment. The
identification of counter evidence is expected to trigger a
review/redo of previous process steps.

The benefits of using OSLC to enable traceability is
undoubtable. Our vision was to bring those benefits to safety-
critical systems self-assessment. Our vision-oriented
investigation is still in its early stages and we have not yet
performed a proper evaluation of our approach. Evaluating our
approach is indeed challenging as the resources (time and
workforce) are not available to develop the OSLC adaptors as
well as other tools -required to create a complex, real world
safety case using our approach. Therefore, in our work we rely
on a phased evaluation in which we use the lessons learnt from
our experiences with ISO 26262-Part 6, OSLC-domain
extension, and Apache Jena in addition to studying literature
(e.g. [28]) and learning industrial experience as in [30] to
validate the potential of our approach.

In our pioneering and conceptual work, no issue concerning
e.g., maturity of OSLC, scalability when performing complex
queries, was taken into consideration. As surveyed in [28],
OSLC is still unstable to offer a solution spanning the entire
ALM-tool chain. However, given its potential, we believe that
it is worth investigating this technological domain and in
parallel contribute to its development. Given our initial simple
queries and the current infrastructural settings, where data can
be considered static, we selected SPARQL. However, to
perform continuous self-assessment in the presence of a real
time stream of data, other query languages could be explored.
For instance, Continuous SPARQL [], the extension of
SPARQL to query RDF streams could be taken into
consideration.

VIII. RELATED WORK
In this section, we discuss work that is related to ours either

because of similar choices in terms of OSLC-specifications or
because of similar objectives in terms of querying mechanisms.
Moreover, we also discuss work aimed at extracting
automatically arguments from unstructured textual corpora.

In the literature few works have currently explored the semi-
automatic creation of safety cases based on OSLC. Iliasov et al
2015 [20] present their vision for building an OSLC-based
prototype of integrated environment for engineering and
certifying dependable systems. Laibinis et al 2015 [21] further
develop the work presented in [21]. Concerning transformation
rules, declarative transformation rules from RDF to RDF and
other languages were discussed in [14]. Authors also discussed
how to make their approach generic, i.e., the rule language
independent from the output language.

Concerning querying mechanisms, Denney et al. 2014 [19]
introduce a preliminary approach and a new query language

Related work

• [Alvarez-Rodriguez et al. 2015] authors propose an OSLC Knowledge
Management specification and a mapping between RDF and
RelationSHiP to enable N-ary relationships representations.

• [Regan et al. 2015] authors propose a Process Assessment Model based
on ISO 15504. Authors envision the possibility to automate the
generation of a safety case via the exploitation of the OSLC specifications.
The vision is discussed but no concrete step is carried out.

2023rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

Conclusion and future work

• First step towards an ISO 26262-compliant OSLC-
based tool chain enabling continuous self-
assessment –technical solution

2123rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

26262 (see [4] and [5]). Initially, we have targeted manual
creation and then we have started conceiving semi-automatic
creation by proposing model-driven certification approaches.
Concretely, we have shown that a safety case fragments can be
created semi-automatically via transformation rules from
contract-and component-based architectural specifications [13]
and process models [11]. Moreover, we have proposed a Cloud-
based infrastructure (see [12]), where safety processes,
including tasks aimed at generating safety case fragments can be
enacted on the Cloud. More recently, as recalled in Section II,
we have started pioneering ways for building an OSLC-based
ISO 26262-compliant tool chain for continuous self-assessment
[6]. Concretely, we have proposed ISO 26262-compliant OSLC-
domains.

In this paper, we integrate our numerous and apparently
scattered contributions in a coherent approach for enabling
continuous self-assessment. Such approach is depicted in Fig. 2.
The main idea is that by exploiting the OSLC-related protocol
stack, continuous self-assessment becomes possible: the life-
cycle of a safety case can be actually aligned to the life-cycle of
the product and thus it can be continuously semi-automatically
generated by compiling the different types of evidence. Figure 2
limits its focus to the alignment of a portion of the software V-
model and the compilation of safety case fragments related to
that portion.

In particular, query mechanism and more precisely SPARQL
query of type “construct” are expected to be formulated and
executed in order to create and populate argumentation-related
RDF-graphs, which in turn can be queried via select queries to
get the information needed to apply transformation rules and
build GSN-goal structures in compliance with SACM.

Fig. 2. OSLC-based approach for self-assessment.

IV. ISO 26262-COMPLIANT AM & QM INSTANCES
The software V-model described within ISO 26262-Part 6,

can be sliced and mapped onto three OSLC-based domain
extensions: one aimed at representing the requirements
engineering phase (ISO 26262-compliant OSLC RM), one
aimed at representing the design and implementation phase
(ISO 26262-compliant OSLC AM) and finally one aimed at
representing the verification phase (ISO 26262-compliant
OSLC QM). In the context of two master theses (see [10] and
[9]) and related publications (see [7] and [8]), RDFS
representations of the AM and QM domains were separately
provided and RDF-graphs were created based on some
Company X (Redacted for double-blind review) documents. In
this section, we limit our attention to a very limited portion of
the AM and QM-related extensions.

More specifically we focus on few classes (namely, SW
Unit Implementation, SW Verification Report, SW Verification
Specification, and, Object to be tested) and create instances by
populating them with CMS1: Fuel –related information and by
linking them. The following listings represent the instances:

<!--SW Unit Implementation: CMS1: Fuel -->
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:oslc_iso26262am="http://open-services.net/ns/oslc_iso26262am#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
<oslc_iso26262am:SWUnitImplementation
rdf:about= " http://open-
services.net/ns/oslc_iso26262am/SWUnitImplementation/CMS1Fuel">
<oslc_iso26262am:asil
rdf:resource="http://open-services.net/ns/oslc_iso26262am#D"/>
<oslc_iso26262am:programmingLanguage>C
</oslc_iso26262am:programmingLanguage>
<oslc_iso26262am:designPrincipleSelected
rdf:resource="http://open-services.net/ns/oslc_iso26262am#No-multiple-use-
of-variable-names"/>
<oslc_iso26262am:designPrincipleSelected
rdf:resource="http://open-services.net/ns/oslc_iso26262am#No-recursions"/>
 <oslc_iso26262am:designPrincipleSelectedRationale>
Observations made in the simulink models and the document AER201, shows
that the names of the variables are maintained during the creation of the
software unit and inside the software functions. Additionally, there are not
recursive functions in the model.
</oslc_iso26262am:designPrincipleSelectedRationale>
<oslc_iso26262am:Implements rdf:resource=" http://open-
services.net/ns/oslc_iso26262am/SWUnitDesignSpecification/CMS1Fuel-
D"/>
</oslc_iso26262am:SoftwareUnitImplementation>
</rdf:RDF>

<!—SW Verification Report-->
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:oslc_iso26262qm="http://open-services.net/ns/iso26262qm#">

<oslc_iso26262qm:SoftwareVerificationReport
rdf:about=" http://open-services.net/ns/oslc_iso26262qm
/verificationReports/1">
<dcterms:description> Work product, specified according to ISO 26262-Part6,
9.5.3, that consists of the execution and evaluation of the software with
reference to the software verification plan and software verification
specification</dcterms:description>
<dcterms:identifier> 1 </dcterms:identifier>
 <dcterms:title > Verification report </dcterms:title >
<oslc_iso26262qm:passResult>1 </oslc_iso26262qm:passResult >
<oslc_iso26262qm:testlevel> sw unit test</oslc_iso26262qm:testlevel >
<oslc_iso26262qm:asil>Not available</oslc_iso26262qm:asil>
<oslc_iso26262qm:version>Not available</oslc_iso26262qm:version>
<oslc_iso26262qm:tailoring > None</oslc_iso26262qm:tailoring >
<oslc_iso26262qm:testExecutionLog rdf:resource="http://myserver/myapp/
testExecutionLogs/1" />
<oslc_iso26262qm:testTool rdf:resource=" http://open-
services.net/ns/oslc_iso26262qm/testTools/1" />
<oslc_iso26262qm:softwareUnitVerificationMethod rdf:resource="
http://open-services.net/ns/oslc_iso26262qm /methods/verificationMethods/1
"/>
<oslc_iso26262qm:calibrationDataSpecification rdf:resource=" http://open-
services.net/ns/oslc_iso26262qm/calibrationDataSpecifications /1 " />
<oslc_iso26262qm:configurationDataSpecification rdf:resource=" http://open-
services.net/ns/oslc_iso26262qm/configurationDataSpecifications /1"/>

References

22

• [Alvarez-Rodriguez et al. 2015] J. L. Jose Mara Alvarez-Rodrgiuez, Manuela Alejandres and J.
Fuentes. OSLC-KM: A knowledge management specification for OSLC-based resources. 25th
Annual INCOSE International Symposium (IS) Seattle, 25(1):16–34, 2015.

• [Regan et al. 2015] G. Regan, M. Biro, D. Flood, and F. McCaffery. Assessing traceability
practical experiences and lessons learned. Journal of Software: Evolution and Process,
27(8):591–601, 2015.

• [Gallina et al. 2015] B. Gallina and M. Nyberg. Reconciling the ISO 26262-compliant and the
Agile Documentation Management in the Swedish Context. In Critical Automotive
applications: Robustness & Safety (CARS), Matthieu Roy, Paris, France, HAL, September
2015.

• [Gallina et al. 2016a] B. Gallina, J. P. Castellanos Ardila, and M. Nyberg. Towards Shaping ISO
26262-compliant Resources for OSLC-based Safety Case Creation. In Critical Automotive
applications: Robustness & Safety (CARS), Gteborg, Sweden, HAL, September 2016.

• [Gallina et al. 2016b] B. Gallina, K. Padira, M. Nyberg. Towards an ISO 26262-compliant
OSLC-based Tool Chain Enabling Continuous Self-assessment. 10th International Conference
on the Quality of Information and Communications Technology- Track: Quality Aspects in
Safety Critical Systems (QUATIC), Lisbon, Portugal, 6-9 September, 2016.

23rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

Thank you for your
attention!

Discussion time…and
advertisement:

2323rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

2423rd May 2017, 5th Scandinavian Conference System and Software Safety (SCSSS)

INTERESTED in JOINING as EXHIBITOR? Contact me..

